- Best
Available
Copy

AD-787 796

FUNCTIONAL DOMAINS OF APPLICATIVE s
LANGUAGES A

Stephen A. Ward

Massachusetts Institute of Technology

Prepared for:
Office of Naval Research

Advanced Research Projects Agency -

September 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

BIBLIOGRAPHIC DATA |- Report No. 2 3. Regipient’s Ay vy~

SHEET MAC TR- 136 N 27 7T

4. Dide and Subttle 5. Report Date: Issued

September 1974

Functional Domains of Applicative Languages 5.

7 \Vuthor(s) 8. Performing Oreatiizur "
Stephen A, Ward No- MAC TR- 136

9. Performing Organization Name and Address 10. Project Task Work Lo N

PROJECT MAC; MASSACHUSETTS INSTITUTE OF TECHNOLOGY :

11. Contract CGrant No.

545 Technology Square, Cambridge, Massachusetts 02139
N00014-70-A-0362-0006

12. Sponsoring Organization Name and Address 13. Type of Report & Period
Office of Naval Research Eousreak: 'Interlm
Department of the Navy Scientific Report
Information Systems Program 14.

Arlington, Va 22217

15. Supplementary Notes

16. Abstracts .
The expressive power of a particular applicative language may be characterized by the
set of abstract directly representable in that language. The common FUNARG and
applicative order problems are scrutinized in this way, and the effects of these
weaknesses are related to the inexpressibility of classes of functionms. Certain
computable functions which are inexpressible in the lambda calculus are identified,
and it is established that the interpretation of these functions requires a mechanism
fundamentally equivalent to multiprocessing. The EITHER comstruct is proposed as an
extension to the lambda calculus, and several theories including this mechanism are
presented and proved consistent (in the sense that they introduce no new equivalence

is developed in conjunction with these theories; this adjunct allows reduction of
expressions having no ncrmal forms in the usual lambda calculus to finite normal form
approximations of the expressions,

into the lambda calculus). A syntactic analog to the Scott construction, *-conversion

17. Key Words and Document Analysis. 17a. Descriptors

17b. ldentifiers /Open-Ended Terms Reproduced by

NATIONAL TECiNICAL
INFORMATION SERVICE

U S Department of Commerce
Springfield VA 151

17¢. COSATI Field/Group

18. Availability Statement 19. Sccurity Class (This 21 NoL ot Vs
Report) , “?
o UNCLASSIFIED
ApproVed for Public Release; 20. Securnity Class (This 22. et
Distribution Unlimited Page .
UNCLASSEEIED S PA
FORM NTIS 35 IREV, 3:72) rc e 3 5 s

THIS FORM MAY BE REPRODUCED

FUNCTIONAL DOMAINS OF APPLICATIVE LANGUAGES 1

Stephen A. Ward

September 1974

This research was supported by the Advanced
} Research Projects Agency of the Department
/ of Defense under ARPA Order No. 2095 which
! was monitored by ONR Contract No. N0O0Ol4-
70-A-0362-0006

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
| PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139

-

.3

ACKNOWLEDGEMENT

The author gratefully acknowledges the assistance of his Thesis Committee in
this work. Professors Jack Dennis and Joseph Weizenbaum, his readers,
provided helpful suggestions and encouragement during the course of the thesis
research. The author feels a special indebtedness to his thesis supervisor,
Professor Michael Dertouzos, for his essential contributions to the direction,

motivation, and technical content of this work.

Particular thanks are due the author’s wife, Debbie, whose constant support
and encouragement have thus far been rewarded by a depressingly long period as
the wife of a student.

The author is grateful to the Department of Electrical Engineering for the
Instructorship under which much of this research was carried out. This work
was also supported in part by Project MAC, an M.I.T. research program
sponsored by the Advanced Research Projects Agency, Department of Defense,
under Office of Naval Research Contract N00O14-70-A-0362-0006.

FUNCTIONAL DOMAINS OF APPLICATIVE LANGUAGES

Abstract

The expressive power of a particular applicative language
may be characterized by the set of abstract functions di-
rectly representable in that language. The common FUNARG
and applicative order problems are scrutinized in this

way, and the effects of these weaknesses are related to the
inexpressibility of classes of functions.

Certain computable functions which are inexpressible in the
lambda calculus are identified, and it is established that
the interpretation of these functions requires a mechanism
fundamentally equivalent to multiprocessing. The EITHER
construct is proposed as an extension to the lambda calculus,
and several theories including this mechanisii are presented
and proved consistent (in the sense that tliey introduce no
new equivalences into the lambda calculus).

A syntactic analog to the Scott construction, *-conversion,

is developed in conjunction with these theories; this adjunct
allows reduction of expressions having no normal forms in

the usual lambda calculus to finite normal form approximations
of the expressions. This leads naturally to a technique for
proving the extensional equivalence of lambda calculus
expressions which are not interconvertible.

*This report reproduces a thesis of the same title submitted
to the Department of Electrical Engineering, Massachusetts
Institute of Technology, in partial fulfillment of the
requirements for the degree of Doctor of Philosophy, June 1974,

5=

Table of Contents

Table of Contents

¢ Introduction
1.1: Programming Language Semantics
1.2: Applicative Languages
1.3 The Thesis: Statement of the Problem
) Outline of the Thesis
1.5: Functional Domains
1.5.1: Intuitive Criteria for Functions
1.5.2: Functional Dcmain: Defini*ion

..
L |

NN ENDNNDWN =D

Syntax of Models
Curried Functions

e FUNARG Problem

The S model

Arithmetic Completeness of S
Functional Incompleteness of S
luation Order
¢ The T Model
: Functional Incompleteness of T
e N model
Axioms for the Lambda Calculus
Nxfmal order: Substitutica

1: The N Evaluator

2: Axiomatic Consistency of N
: Functional Domain of N
¢ Summary

6
7
: Motivation for a Multi-valued Semantics
g.l: Necessity of non-functions: WHICHFF
ol Codigﬁ primitives: The C model
e Turinf-machine Tar Pit
% 2.2: Functiona ity of DECODE
W2 LAMBDA-free AEs
2.2. An Enumeration of 0,
3.3: E model: MultiBrocessing pr¥mitives
3.4: The Intuitive Paradox
3.5: Multi-valued Semantic Elements

nNPON
L .

ro
L]
NN 8 wWow

n
L
e o LN) L]
=T8I BN

\J'l\J'lN—l

3.5.1: Domains of Specification
2.5.2: EITHER and the Lambda Calculus
3.6: The Power Set Domain
3.3: Interpretation of F#
3.8: Computable elements of F#
3.9: Summary

: Theories of EITHER-conversion

1: Preliminary Definitions

2: The Either-R Theories

y.2.1: erties of Either Theories
4.2,2: EIT ER and Evaluation Order
4,2.3: Consistency of Either-R
3: Summary

#.Conversion
: The R-* Theories

1' Significance of normal forms
.2: Theorem on Normal Forms

.a Relation to the Lambda Calculus
" Consistency of R-%* Theories
: Applications to the Lambda Calculus
¢ Summary

Either-R-#* Theories
Consistency of Either-R-#
Relation of # to EITHER

: Evaluators for E

: Summary

U'\
.

i
o o
; LAJNU'IU'IU'\U’I.;
[¢:] . e o o o
— ek ek

s o
2N =

.e
OO

— b d b b

terpreter Structure and Expressive Power

OWOWOONN W20 =W~ N=0O-INEW OWOO~ION NEW—=OWOROUWW O3 -AWNOW D L = DL R WO O 00~

OO OOV~ ~1-1OOOVOVOY VNN NNV N S e o EUOUHILRILI R P PO PO M) o = s

—

Table of Contents -6-

7: The Either-K Theories

7.1: K-aktstraction
7.2: Consistency of Either-K Theories
7.3: Funct ional” Domains of Either-K
7.4: Summary

8: Summary and Conclusions
.1: Summary
8.2: Conclusions
.3: Directions of Future Research
9: References

10: Biographical note

NN
—_— 200
F

-

— et —a
—— e
b o) UVION}

1 n

Chapter 1i:

Introduction

1.1: Programming Language Semantics

The semantics of a programming language may be viewed as a theory which
iccounts for the behavior of programs written in that language. An
interpreter for a language L is a model for the semantics of L, and a language
vhose semantics is incomplete (in the sense of an incomplete theory) may have
many "correct" interpreters which behave differently just as an incomplete
~heory may have disparate models. We find that the usual more specific
definitions of semantics (e.g. "the relation between expressions and the
cbjects which they denote") make assumptions about the structure of a universe
of "meanings" which are difficult to Justify in the general case, where side
effects, assignment, and transfers of control must be accounted for
semantically. Such considerations motivate the restriction of the present

work to applicative languages.

Serious concern for formal semantics is not usually an important consideration
in the architecture of practical languages. ‘ypically a language is designed

'apgely by pragmatic considerations and the formal statement of its semantics
is either abandoned entirely or postponed until the more important

implementation issues are sorted out. The subsequent semantic formalization
of the language inevitably becomes a major task, and the complexity, volume,
and inscrutability of the result may constrain its usefulness. A classic
example of such an undertaking is the description of PL/1 in the Vienna
Definition Language[24].

An alternative tecinique of language design, exemplified to some extent in
LISP[26] and its recen® derivatives, involves the specification of the
pragmatics of a language after decisions on some particul 'r concise semantics
have been made. Unfortunately languages so designed tend to have serious

defects from a practical point of view and are abandoned or complicated by the

adJdition of ad hoc mechanisms to make them more useful.

_8- 1.1

The designer of a language is thus confronted with a choice between concise
semantics and practical usability, and he justifiably tends to opt for the
latter alternative. The extent to which semantic considerations may be
reconciled with practical issues remains an important open question, and the
development of practical languages with concise, elegant semantics is the lonyg
term goal of much of Computer Science esearch. The problem is being attacked
from two discernible directions: (i) semantic formalisms which deal with the
mechanisms of extant practical languages, such as the analysis of
uninterpreted schemata(9,8,13,17,25]; and (ii) the adaptation of existing
formalisms to very simple model languages such as the lambda
calculus(2,3,5,15,22]. The work reported here falls naturally into the
second category.

1.2: Applicative Languages

Familiar concepts of mathematics provide an informal semantics for many
aspects of computer languages. Manuals for most programming languages relate
various program constructs to such notions as real numbers, arithmetic, and
funct ions, with which the reader is presumed to be acquainted. Often
terminology and notation are borrowed from mathematics, implying some informal
relation between, say, a FORTRAN ”function" and the common mathematical notion
of function., This relation is only approximate, since for example no
mathematical analog has been established for the FORTRAN fuvnction which prints

its argument on the teletype. In order to formalize the relationship between

program constructs and matheratical notions, then, we focus our attention on
the highly restricted class of applicative languages.

The semantic bases of applicative languazes are the theories of mathematical
functions, and the constructs of these anguages are restricted to simple

analogs of the related mathematical notions. Each applicative ianguage
provides a syntactic formalism for the representation of functions and their
application to arguments, and the semantics of an wapplicative language is in
general a rule for the association of expressions, constructed according to

this formalism, with values from an abstract semantic domain containing

funct ions and constants, Formalizing a consistent semantics for an

2 -9-

applicative language appears to be an easy first step in pursuing the general
problem of programming language semantics; since set theory provides
satisfactory semantic domains, all that remains is the seemingly simple

association of expressions with set theoretic functions and constants.

Yet even this simple problem is plagued with complications, and it is only in
recent years that progress has been made in this area largely due to
techniques developed by Dana Scott(5,6,22]. In fact, the usual set theoretic
characterization of functions is not so well adapted to tue semantics of
applicative languages as one might suspect: type restrictions, placed on set
theoretic functions in order to avoid Russel ‘s Paradox, are difficult to
reconcile with the natural proclivity of applicative languages for the
self-application of functions. The work of Scott justifies our optimism that
such problems are tractable, and that the semantics of applicative languages
may be based on the mathematics of functions. The extension of the resulting
semantics to non-applicative mechanisms such as assignment and side effects
however, remains an area of grave uncertainty, and it seems likely that
theories of functions will ultimately prove to be inadequate bases for the
semantics of programming languages in general. In the meantime, however,
applicative languages and their functional semantic domains are probably the
closest we have come to a successful programming language semantics, and we
feel that there is much insight to be gained from further exploration of this

area.

The semantics of an applicative language L, then, may be viewed as a mapping
between the set of valid expressions in L (the domain of discourse of L) and
and a semantic domain of abstract functions and constants. A consequence of
the Turing Universality of L is that this mapping must be many to one; each
abstract semantic element has, in general, infinitely many representations in
the language L. Tae semantic mapping thus leads naturally to a notion of
semantic equivalence between expressions in L, partitioning the domain of

di scourse of L into equivalence classes each of which corresponds to a single

abstract semantic element.

-10- 1.3

1.3: The Thesis: Statement of the Problem

The problem which this thesis addresses is the characterization of the
expressive power of an applicative language in terms of the structure of its
abstract semantic domain. This process generally involves relating specific
applicative language features to the expressibility of particular classes of
functions, e.g. the solution of the FUNARG problem to the expressibility of

funct ions mapping integers onto an infinite range of semantically distinct
functions.

This work focuses on a very few specific language mechanisms, with particular
attention given to an applicative analog of mult iprocessing. Partial answers

are provided to such questions as:

1) Are there functions whose computability depends fundamentally on a notion

analogous to multiprocessing?

2) What applicative mechanisms are necessary for the expression of such
funct ions, and is the impact of these mechanisms on the structure of the

semantic domain?

3) What is such relationship between such multiprocessing constructs and
other issues of applicative language evaluation, such as evaluation

order?

The work presented here might be characterized as a search for an applicative
language L which is functionally complete in the sense that every computable
function definable on the semantic domain of L is expressible in L -- our
reluctance to cite this as the principal goal of the thesis is probably due to

our failure to find such a language.

1.4: Outline of the Thesis
The organization of the remaining chapters is as follows:

Chapter 2 develops the basic framework through the presentation of three
interpreters for applicative languagess, designated S (stack environment),

T (tree environment), and N (normal order). Each interpreter exemplifies

1.4 -11-

a typical language limitation and each is used to relate a specific ;

language characteristic to the expressibility of a particular class of

funct ions.

Chapter 3 demonstrates a particular computable function which is
inexpressible both in N and in the lambda calculus, and relates this
inexpressibility to the semantic requirement that an expression in these

languages have at most a single value. Two alternative language

extensions are discussed, each of which solves this specific
expressibility problem. The solutions involve, respectively, primitives
for coding the representation of functions as integers and a
multiprocessing primitive called EITEER. Each of these extensions
requires r: uification of the structure of the semantic domain, with the
use of coding leading to drastic and undesirable consequences. For this
t and related reasons, EITHER is chosen. To account for the semantics of
EITHER, the semantic domain of N is expanded into a power set and each

expression X is associated semantically Wwith an enumerable set containing

the admissible values of X.

The formalization of EITHER-augmented languages may procede in several ways,
differing in the restrictions placed on evaluation order. Chapters 4, 5, 6,
and 7 deal with certain formal theories, based on the lambda calculus, for the

reduction of expressions involving the EITHER construct:

Chapter 4 provides basic definitions and presents the Either-R Theory, in
which lambda conversion is allowed only in expressions whose arguments
are in normal form. This restriction is motivated by the intuitive

decsire to maintain the distributivity of functions over terms of an
y EITHER clause, but it limits the power of languages based on this theory.

Chapter 5 develops a theory of %*-conversion, designed to mitigate the
limitations imposed by the restricted lambda conversion of the Either-R
Theory. The element * is introduced as a canonical representation of
every nonterminating computation, and a syntactic mechanism is provided
for the reduction of expressions to approximations which are in normal
form. The use of *-conversion provides techniques for proving certain

relationships in the conventional lambda calculus. This chapter presents

-12-

results which are of interest independently of their relation to the

development of the Either theories.

Chapter 6 presents the Either-R-%* theory, combining the EITHER mechanism
with ®*-conversion, and establishes its consistency. While this system
retains the restriction on lambda conversion, it has the power of the
lambda calculus augmented by the EITHER primitive. Thus, languages based
on Either-R-* solve the specific expressibility problem raised in Chapter

3. Interpreters and semantics for such languages are discussed.

Chapter 7 presents the Either-K theory, which combines the EITHER construct
with unrestricted lambda conversion. Significant semantic differences
between the Either-R and Either-K theories are noted, and it is
informally observed that the removal of the restriction on lambda
conversion leads to the expressibility of certain functions which are

inexpressible in the Either-R-* languages.

The last chapter summarizes the results of this work and proposes avenues for

future research.

1.5: Functional Domains

An underlying assumption of this research is that the fundamental semantic
intent of applicative languages is to provide computational models of
mathematical functions. As a consequence of this assumption, we are inclined
to view functions in an applicative language as approximations or models of
abstract mathematical functions, and to treat any disparity between the
behavior of the computational model and the corresponding mathematical

function as a "bug" or idiosyncrasy in the language.

The thrust of this research is aimed at the limitations of particular
applicative languages as models of systems of mathematical functions. We

begin by specifying, in the next section, criteria which must be obeyed by

applicative functions to be intuitively satisfactory as models of mathematical

funct ions, and then distinguish for each applicative language L that subset of
the domain of L containing only such intuitively satisfying functions. We
call such a subdomain of L a functional domain of L.

1.5.1 -13-

1.5.1: Intuitive Criteria for Functions

#ostricting our attention for the moment to unary (single argument) functions,
we note that
1) A function f is a mapping from a domain Df to a range Rf. The
set-theoretic model of £ is a set of ordered pairs, {...<Di,Ri>...}, such

that‘g_[Di]=Ri if and only if <D, ,R,> is an element of f.

1"

2) A function f may be partial over domain D, i.e., there may be elements Di
in T such that L[Di] is undefined; this corresponds to the practical
situation of a nonterminating computation or a computation which results
in an error condition. We shall refer to such a computation as

divergent.

3) If £ and g provide the same mapping, then they are the same function.

4) g is a subset of £ (in the set-theoretic sense) if and only if for every
Di in the domain of g, g[Di]zﬂi implies L[Dilzﬂi.

Given a language L and a function f, a principal intuitive requirement is the
distinct ion between the function f and the various algorithms (or expressions

+in L) which may be used to compute f. A major complication in the semantics
of applicative languages arises from this many-to-one correspondance between
algorithms and functions, particularly in light of the well known

undecidability of equivalences between algorithms.

1.5.2: Functionai Domain: Definition

The intuitive considerations of the previous section motivate the following
definition:

Defn 1.1: A functional domain F is a set containing the set N of natural
numbers and computable f‘unctions,1 along with an equivalence relation ~
such that:

! Unless specifically stated, we shall use the term function with no implied
type restrictions. ¥hus funct ions include functionals of arbitrary order,

consistent with the typeless character of the applicative languages considered
here.

-1U4=
1) if x is in N or y is in N, then x7y if and only if x=y.

2) if neither x nor y is in N, then x"y if and only if for every z in

F, x[z1~y[z] or both diverge together.

3) if x~y, then for every z in F, z[x]"z[y] or both diverge together.

Clause (1) sinply asserts that different numbers, eg 2 and 3, are semantically

di fferent objects. Clause (2) asserts that any object in F that is not a
number is a function, and moreover that functions are semantically equivalent
if and only if they perform equivalent computations for every set of
arguments. Clause (3) insists that the application of a function to

semantically equivalent arguments yield semantically equivalent values.

An expression z is said to be functional over the domain F if, for every
choice of x 2nd y in F, x"y implies that z[x]-z[y] or both computations

diverge together. Thus (3) is the requirement that every function in a

functional domain F be functional over F.

We note that the equivalence relation is not, in general, computable.
Furthermore, there may be elements x and y in F such that x“y is not defined,
that is, such that neither x~y nor “(x"y) is derivable from the above

definition.

This definition is rather more specific than necessary. The choice of natural
numbers as a basis of semantically distinct constants, rather than, say,

character strings or floating point numbers, is arbitrary. In dealing with

the lambda calculus we could make the apparently stronger - :quirement that
normal form expressions be semantically distinct, rather than just the
particular normal form expressions which are numeric constants; however it
happens that the two alternatives are entirely equivalent in the context of
our model languages, and our present definition is the less dependent on

particular syntactic considerations.

2 ~-15~

Chapter 2:

Interpreter Structure and Expressive Power

In this chapter several illustrative interpreters for applicative lan‘uages
are presented, and compromises in their implementation are related tu the
inexpressibility of certain functions. The model interpreters are taken from

Dertouzos[3] where they are discussed and motivated in greater detail,

2.1: Syntax of Models

The essential components of an applicative language syntax are conventions for
the representation and application of functions. Typical applicative
languages provide for the representation of functions by either of both of the

following means:

1) A set of reserved symbols designating primitive functions whose semantics
are basic to the language;
2) A convention for functional abstraction, or the definition of new

funct ions by means of expressions containing variables.

The pure lambda calculus of Church[1] is illustrative of languages using only
the abstraction mechanism; the combinatory calculus of Curry[12] exemplifies
the use of primitives without abstraction. Curry[12] has demonstrated the
equivalence of these mechanisms, with minor qualifications, and the choice
between them for our purposes is largely a matter of convenience; we provide

here syntactic constructs for both.

Beyond these constraints, the syntactic details of the languages discus<ed
here are not important. A LISP-like syntax has been chosen for the
development of thes models and to provide a definite basis for examples and
illustrations, although the results and examples may be translated to conform
to other syntactic conventions which are consistent with these constraints.

Syntactic characteristics of our model languages include:

1) A finite alphabet including the alphanumeric characters and the special

characters "(” and ")";

-16- 2.

2) A countably infinite set of identifiers, each a finite string of

alphamumeric characters of which the first is alphabetic;

3) A set o© numeric constants, each represented in the language by a finite

string of digits.

The elements of the model applicative languages are the applicative
expressions (AE’s) whose syntax is given by:

<AE> .= <identifier> | <number> ! <combination> | <lamoda
expression>

<identifier> «= Cletterd> ! <identifier><digit> i<identifier>
{letter>

<combination> = (<AE list>)

<AE list> <AE> | <AE> <space> <AE list>

(LAMBDA (<bvl>) <AE>)

<lambda expression> :

<bvl> = <null> | <identifier> <space> <bvl>
<number> = <digit> | <digit> <number>
<letter> ti=AJB ! ... 12

<digit> e Bl 20 see 0

We assume of these model languages that data is either numeric or functional,
that is, that the yalue computed for any applicative expression must be either
a natural mumber or a f‘unction.1 An expression X is atomic if X is an
identifier or a number; in addition the focllowing syntactic forms have special

meaning in our model languages:

1) The syntactic ivita of a lambda expression is

(LAMBDA(a1 al, cae an) b)

2

1
Our decision to ignore for the present other common data types (floating
point numbers, arrays, character strings, lists) is justified by their

codabilit{ as numbers
data may be

so that our results concerning processing of numeric
extended to the processing of these other data as well.

2.1

-17=

where LAMBDA is a reserved identifier in the language, the ai are
identifiers on the bound variable list of the lambda expressions, and the

expression b is the body of the lambda expression.

The syntactic form of the application of the procedure (function) f to
arguments x1 <X xn is
(f X, «oo x)
1 n

Here f is presumed to be the representation of a functional datum, and

the xi are representations of arbitrary data which are supplied to the

funct ion f as arguments.

There is in each language a small finite set of reserved identifiers used to

denote primitive functions. Our initial models will include the following

primitive function identifiers:

1)

2)

3)

The logic values T and F, primitive functions defined such that the value
of the application

(T a b)

is the value of the expression a, regardless of whether the value of the

expression b is defined. Similarly, the value of

(F ab)
is the value of the expression b whether or not a has a value.

The function PLUS of 2 arguments, defined such that the value of the

expression
(PLUS a b)

is the sum of the values of the expressions a and b. The value of the

application of PLUS is undefined if either of the values of g or b is

nonnumeric.

The function GREATER of 2 arguments, defined such that the value of the

expression

(GREATER a b)

-18- 2.1 i
is the primitive function T if a has a higher numeric value than the
expression b, and F if the value of a is less than or equal to the value
of b.

We shall often refer to an identifier which is not a primitive function symbol

as a variable. An occurrence of the variable y in the expression X will be

termed a free occurrence if one of the following applies:
1) X is identically the variable y; or

2) X is of the form (A1 e An) and the occurrence of y is free in one of

t he Ai; or

3) X is of the form (LAMBDA(a1 5 (o1 aJ)M), y does not occur in the bound

variable list (a1 ... a,), und the occurrence of y is free in M.

J

An occurrence of the variable y which is not free is bound.

2.2: Curried Functions

The syntactic provision made here for functions of multiple arguments requires
certain further elaboration. We may reasonably demand, for example, the
ability to express the function MPLUS defined such that the value of (MPLUS m)

i{s the m=ary function which returns the sum of its m arguments. Such

funct ions are, in general, unrepresentable unless some primitive mechanism is

provided within the language for the abstraction of multiple argument

functions. We might consider the abstr- ~tion primitive ALPHA, defined such

that the value (ALPHA F G m) is the m-ary lambda expression
AMBDA (X
(LAMBDA(X . ..X) (G X (F X, «oo X 4)))

where F and G are presumed to represent (m=-1)-ary and binary functions,
respectively. We might then define MPLUS so that (MPLUS 2) returns PLUS, and
(MPLUS n) returns (ALPHA (MPLUS n-1) PLUS n) for n>2.

Such a primitive is, however, unnecessary in most languages. The technique of

Curried t‘unctions1 may be used to couch multiple-argument functions in terms

! named in honor of H.B. Curry who developed this technique; see [-2]

2.2 -19-
of unary functions, whence the application of F to arguments A1 A2 ...An ﬂ
becomes '

|
(oo (FAD A ..o A) g

and the n-ary lambhda expression (LAMBDA(A1 A ...An)M) become:s

2

(LAMBDA(A1)
(LAMBDA (A,)

(LAMBDA(An)M) auz oY

The convention of Curried functions simplifies the presentation of proofs and
interpreters, as only single argument functions need be considered; we

‘ herefore hastily adopt it for our present purposes. The conventional
multiple argument syntax is slightly less complicated, however, and tends to
greater clarity than the use of Curried functions; we consequently allow
ourselves the informality of switching freely between the two conventions at
cur convenience. We may then consider instances of the multiple argument
syntax as an abbreviation for the corresponding Curried syntax, which we take

as basic.

An exception must be made in the firs: model language presented, however, as
the FUNARG problem does not interact gracefully with Curried functions; hence

in this case the assumption of single argument functions is not made.

2.3: The FUNARG Problem

We are now in a position to give an example of a functionally incomplete

language, which we call S, S is an abstraction of the applicative subset of
LISP and similar stack-oriented languages; it serves to introduce the notion
of environment, and demonstrates that certain minimal structural constraints
on environment handling mechanisms are necessary for the expressibility of a

particular class of functions.

e -—— e ¢

-20- 2.3.1
2.3.1: The S model

An envircnment is a linear sequence of ordered pairs (or bindings) (x,v),
where x is an identifier and v is a value. Environments are thus a mechanism
for the use of identifiers as variables, serving to record the values
associated with each variable. We represent. the environment which binds the

variable X1 to the value V1, X2 to V2, and so on, as

((X1,V1)(X2,V2) S,)

The enviromment structure of the interpreter for S may be viewed as a stack,
bindings being pushed onto the environment from the left at the start of the
application of a lambda expression, and subsequently being popped from the
enviromment at the completion of that application. The S interpreter finds
the current value for a variable X by looking, in turn, at each binding
starting with the leftmost; when a binding whose first element is X is
encountered, the associated value (the second element of the binding) is taken
as the value of X. We may describe this operation by defining a primitive
funct ion lookup of two arguments, corresponding respectively to the identifier
to be evaluated and the environment in which its value is to be found:

lookup[x;((X1,V1)(X2,V2)...(Xn,Vn))]=
if x=X1 then V1;
else lookup[x;((Xz,Vz)...(Xn,Vn))]

We now describe the interpreter for S as a funciion defined recursively as

follows:
S[x;el =

if x is a number, then x;
if x is a member of {T,F,GREATER,PLUS} then x;
{f x is an identifier then lookuplx,el;
if x is a lambda expression then x;
if x is of the form (T y z) then Sly;el;
if x is of the form (F y z) then S(z;el;
if x is of the form (GREATER y 2z) then:

if S{y;el>S[z;e] then T;

else F;

2.3.1 =21~

if x is of the form (PLUS y z) then S[y;el+S[z;el;

if x is of the form ((LAMBDA(s1...sn) b) y1...yn) where the
si are identifiers, then
S[b;(s1,s[y1;e])...(sn,S[yn;e])e];

if x is of the form (y z, z, ... z) where y is not a lambda

expression, then S[(S[y;e] Zy .. zn);e];

elsc undefined

Thus S[x;e] computes the value of the expression X in the environment e.
S[x;0] (where @ is the empty environment) computes the value of x on an S

evaluator in its initial ‘bare" state; we may refer to this simpley as the S

value of x.

2.3.2: Arithmetic Completeness of 3

We refer to a language as arithmetically complete if every computable first
order1 function is representable as a procedure of that language. We show
that S is arithmetically complete by showing that for every first order
partial recursive (hence computable) function there is a corresponding
function in S. The constructions of this section are adaptations of those
appearing in Dertouzos[3] and are included here primarily for sake of
illustration; while each subsequent model language is also arithmetically

complete, similar constructions apply in each case and will not be repeated.
As 5 prelimirary step, we consider the S function given by:

(LAMBDA(X Y)
((LAMBDA(X Y D)(D X Y)) X Y
(LAMBDA(X Y) ((GREATER X Y)
(PLUS 1 (D X (PLUS 1 Y)))
0))))

which computes the "recursive difference" function

! Following the terminology of logic, a firsc order function contains only
numbers in its range and domain, and functions of order j may contain (in
addition to numbers) functions of order less than j

=22~ 2.3.7

D[x;y] = if x>y then x-y else 0;

by the algorithm

Dix;y] = Lf x>y then 1+DIx;y+1];

else 0;

Note that the extra two layers of LAMBDA binding serve only to bind the free
occurrence of the identifier D within its own definition, and thus to make the

recursive function operate properly on S.
We may define the predecessor funct ion
P{x] = if x<1 then 0 else x-1;
in S by the expression:
(LAMBDA(X) (D X 1))
where D is the recursive difference function defined above.

Now we shall demonstrate that every partial recursive function of first order
is representable as a function in S. In the following, lower case letters
represent partial recursive functions while upper case letters denote their

corresponding S functions:

1) For every pair of natural numbers n and m, the m-argument constant

function of value n is expressed in S as:
(LAMBDA(X1 apers Xm) n)

2) For every pair of numbers n and m, the m-ary projection function which
returns the value of its nth argument is expressed in S by:

(LAMBDA (X, ...Xp) X,)
3) The successor function is expressed in S by:

(LAMBDA(X) (PLUS 1 X))

L This is one of several nt ricks" which may be used to ferform recursion on S.
The necessity of such tricks stems from the expressive 1nadequacy og S: the
or

Landin{2]; for a general discussion

scussion o , see Rosenbloom

X , Y, isn 11ixpressible as a function of S,
of recursion on S see Dertouzosr

2.3.2

-23=-

4) (composition) For every choice of numbers n and m, m-ary partial

5)

6)

recursive functions gy oo LA and n-ary function f, the m-ary functior h

defingd by
h[x1;x2;...;xm] = f[g1[x1...xm], me ,gn[x1...xm]]
is expressed in S as

(LAMBDA(X1 cos Xm)(F
(G1 X1 coe Xm)
(Gy Xy oev X))

where F, G1 . Gn are the S expressions corresponding to f and B+ oBp»
respectively.

(primitive recursion) If the n-ary partial recursive function g and the

(n+2)-ary primitive recursive function f are expressible in S as G and F,

respectively, then the (n+1)-ary function h defined by:

h[x1,...xn,0] = g[x1,...xn]

h[x1,...,xn,y+1] = f[x1,...,xn,y,h[x1,...,xn,y]]
may be expressed in S by

(LAMBDA(X1 M. Xn Y)
((LAMBDA()(.I .o Xn Y H)(H)(.I .ee Xn Y)) X1 “es Xn Y
(LAMBDA(X1 ves Xn Y) ((GREATER Y 0)
(F X, ... Xn (P Y) (H X, ... Xn (P Y)))

1
G x, ... XN

where P is the representation of the predecessor function given earlier.

(mu-recursion) If the (n+1)-ary total recursive function h is expressible

in S by H, then the partial recursive function g defined by

g[x1;...;xn] = the least y for which
h[x1;...xn;y] =0

is represented in S by

-2U- 2.3.2

(LAMBDA(X1 coc Xn)
((LAMBDA(R) (R 0))
(LAMBDA(Y) ((GREATER (H X1 ...Xn Y) 0)
(R (PLUS 1 Y))
1)))

Finally, we note that the class of recursive functions is by definition
exactly that class of functions obtainable through finitely many applicaticns
of the above six rules; hence the S representations given in the rules
constitute a technique for constructing an S expreasion which represents any

funct ion which can be shown to be partial recursive.

2.3.3: Functional Incompleteness of S

Recall that the functional completeness of a language L requires that every
computable function defined on the semantic domain of L bte expressible in L.
Since the natural numbers and (by the preceding section) first order functions
are included in the semantic domain of S, every second order function is
definable on the domain of S. The functional incompleteness of S may then be
demonstrated by showing that a simple second order function is not expressible
as an S function. We begin by observing that some higher order functions are
expressible in S, e.g. the function g (the "twice" function) given by

glf;x] = flflx]]
is expressible in S as
(LAMBDA(F X)(F (F X)))

hence it cannot be argued that only first order functions are expressible in
S. The weakness in S which we will demonstrate involves the inexpressibility

of certain second order funct ions, notably functions which contain free
variables and which appear as arguments or values (i.e., bodies) of lambda

expressions: the so called FUNARG problem.1

! General awareness of the FUNARG Yroblem (as well as its name) arose from
Sar%y expfg%ence with LISP. For discussion see Weizenbaum[23], Moses[10] or
ertouzos(3].

2.3.3 -25-

Consider the wnary function f; whose domain contains only integers and whose

range contains only first order functions, defined by

f[x] = that function g defined by
gly] = x+y

The function f is computable; it may in fact be expressed in the lambda
calculus by

(LAMBDA (X) (LAMBDA(Y) (PLUS X ¥)))

To show that f is pot 2xpressible in the language of S, the following
definition is useful:

Defn 2.1: We say that the expressicn a appears as a subexpression of the
expression b if any of the following are true:
1) The expressions a and b are identical;
2) b is of the form
(b1 b2 3o C bn)
where a appears as a subexpression of one or more of the bt
3) b is of the form

i
(LAMBDA(X1 ...Xn)B)
where g appears as a subexpression of B.
We say informally that b contains a if a appears as a subexpression of b.
The basis of the inexpressibility of f in S is established by the proof of
Lemma 2.2: Let A be any applicative expression and let B be a lambda

expression appearing neither as a subexpression of A nor in the

environment e. Then B does not appear as a subexpression of S[A;e].
proof is by induction on the recursion depth of S[A;e].

basis For the following syntactic classes of A, the computation of S[A;e]

involves no recursion:

Case 1: A is a number, a primitive function identifier, or a lambda

expression. Then S[A;e]=A, and the lemma is trivially satisfied as

-26- 2.3.3

B is noc a subexpression of A.

Case 2: A is an identifier other than a primitive function symbol. Then

S[Ase] is lookup[A;e] which cannot contain B since by assumption the

environment e does not contain B.

induction: The remaining cases of the syntax of A follow; for these we

assume that the Lemma holds for recursive calls to S.

' Case 3: A is an application of GREATER or PLUS; then the value of S[Aje]

is a number or logic value and does not contain B.

Case U: A is the application of a logic value T or F to arguments A1 and
Az. Neither A1 nor A2 can contain B since A does not contain B;
hence the inductive hypothesis applies to either of the computations

S[A1;e] and S[Az;e] and B cannot appear in S[A;e] which is one of

these vaiues.

the arguments A1"'An' By the inductive hypothesis, B does not
appear in any of the values S[A1;e]...S[An;e], hence the new
environment e'g(X1,S[A1;e])...(Xn,S[An;e])e does not contain B. As
a subexpression of A, M cannot contain B; thus the inductive

hypothesis applies to tre value S[M;e’] returned as the value of

Y
|
Case 5: A is the application of a lambda expression (LAMBDA(X,...X)M) to
. S[A;el.
Case 6: A is the application of Y to the arguments A1"'An’ where Y is
’ neither a lambda expression nor a primitive function symbol. Y is a
subexpression of A and by assumption does not contain B as a
subexpression. Then the inductive hypothesis applies to the

computation of S[Y;el=Y", and Y’ does not contain B; a second
application of the inductive hypothesis reveals that B cannot appear

as a subexpression of S[(Y’ A1---An);e]ES[A3e]-

These cases are exhaustive, completing the proof.

We can now characterize a major weakness of the language S by

2.3.3 -27-

Thm 2.3: Every function expressible in S whose domain contains only numbers

may have at most finitely many functions in its range.

Proof: Functional values in S must be either primitive function identifiers
¢ lambda expressions. As there are finitely many primitive functions,
we need only show that each function of numbers in S has finitely many
lambda expressions in its range. Implicit in this argument is the fact
that the number of functions expressed by a set of lambda expressions is
no greater than the number of lambda expressions in the set. Each lambda
expression which contains no nontrivial occurrences of free variables
represents (though not necessarily uniquely) a single function; lambda
expressions with nontrivial occurrences of free variables (i.e., which
canpute di fferent functions in differing contexts) do not e¢-rrespond

semantically to functions.

By lemma 2.2, a function of integers can have lambda expressions in its
range only if they appear as subexpressions of the function, since for
any integer n and expression f the expression (f n) can contain the
lambda expression g as a subexpression only if g is a subexpression of f.
As the function must be represented by a finite expression in the
language S, it may contain only finitely many lambda expressions as
subexpressions and hence has finitely many lambda expressions in its

range.

Clearly, the function f defined at the beginning of this section is a function
of integers having infinitely many furctions in its range; we conclude that f
is not expressible in S. The problem may be characterized as inadequate
handling by S of lambda expressions containing free variables. It is apparent
“hat free variables are evaluated in the environment in which a function is
applied, rather than the environment in which it is eva 1ated. Thus lambda
expressions with free variables have the property that che computation which
they perform depends on values in the environment of their caller; this
dependency constitutes an implieit input and justifies our exclusion of such
lambda expressions from the class of functions. Yet proper S functions may
include such lambda expressions as subexpressions; witness the S function

Best Available

Copy
for page 28

28

o

.3.3
(LAMBDA (X) ((LAMBDA (Y) (PLUS X Y)) 3))

.1Jch contains no free variables and hence no implicit inputs. The variable
rowever, appears free ‘n the lambda expression in its body; this innermost
1zrbda expression is not a function. The question of the contribution of free
.1ciables to the functional richness of S naturally arises at this point: Are
_nere functions which are expressible in S only through the use of free
;ariabics? uvur suspicions lead to the conjecture that every function f
-.pressible in S may be represented by an expression F in which no lambda
wpression appearing as a subexpression contains free occurrences of
variables. This conjecture does not completely deny the usefulness of free
vsariables on the S machine. Indeed, lambda expressions with free variables
are moderately well behaved when passed downward, i.e., as arguments to
unctions; under these circumstances, the prinecipal danger is due to possible
~onfliects with variables bound by the functions to which the lambda
:xpressions are passed. They may, however, be considered to be "limited
“uynct ions" with the qualification that they be applied within the scope of the
ree variables in their original environment and that they may not be passed
‘¢ functions whose bound variable list includes any of the free variables.
.uch qualifications seriously impair the semantic clarity of the language
imposing them.

2.4: Evaluation Order

“ne functional incompleteness of S was shown to be related to the specific way
‘n which S associates values with variables in an interpreted program: i.e.,
ne enviromment structure of S. The remaining sections of this chapter

~esent model interpreters with alternative environment structures, and which
~olve the specific problem demonstrated in S; however, they demonstrate

. imilar inadequacies in the organization of control structures, i.e. the data

=tructure specifying which computations are to be performed and-their relative

requence.1

" The notion of %ongrol ture has never, to the author’s knowledge, been

:oequately formallized. nformally it is the bookkeeping mechanism necessary
‘0 resolve algorithms into se?uences of operations -- e.g., the use of a stack
o record the return points o

calls to a recursive subrouéine.

-20-

The first model to be presented is T, similar to S except that its environment
is structurally a tree rather than a stack. It is argued that T and S share a
deficiency which stems from their evaluation order, in particular, from their
uniform evaluation of arguments regardless of whether the resulting values are
essential to the computation. T is thus functionally incomplete due to

evaluation order.

The N model, discussed in section 2.%, is closely related to the normal order
evaluation of the lambda calculus. It is superior to T in that every
expression having a T value has an equivalent N value, while certain

expressions have N values but not T values.

2.4.1: The T Model

The traditional solution of the environment p-oblem of S involves a new
"internal” representation of a function, called a closure. A closurc
includes, in addition to the information in a lambda expression, a
specification of the environment in which its free variables are to be
evaluated. As the closure mechanism may require the retention of environment
branches corresponding to functional applications from which control has been
returned, the environment becomes a tree rather than the linear stack of S;
hence we call nur new language T. The difference between T and S is that in
T, the lambda expression

(LAMBDA(S1...sn) b)

is no longer self evaluating.1 Its value, in environment e, is

(FUNARG(s1...sn) b e)
which is the representation of a closure in T. We define T as follows:

Tlx;el =
if x is a number, then x;
if x is a member of {T,F,GREATER,PLUS} then x;
if x is an identifier then lookup[x;el;

! We say an expression X is self evaluating if the value of X is X.

-30- 2.4

if x is of the form (T y z) then Tly;el;
if x is of the form (F y z) then T[z;e];
if x is of the form (GREATER y z) then:
if T(y;el>T(z;e] then T;
else F;
if x is of the form (PLUS y 7, then Tly;el)+T[z;el;
if x is of the form
(LAMBDA(s1...sn) b) then
(FUNARG(s1...sn) be);
if x is of the form
((FUNARG(s1...sn) b e1) y1...yn) then
T(b;(s,,¥(y15e]) ... (sn,T[yn;e])+e1];
if x is of the form (y 2y 2y oen zn) where y is not a
FUNARG closure, then
T[(Tly;el z, ... z)iel;
else undefined;

We note that a lambda expression is not applied directly; it is first
converted to a closure (by its evaluation), and then applied by the evaluation
of its body in an environment formed by appending the bindings of its bound
variable list to the closure environment. Tius the free variables of a lambda
expression are evaluated in the environment ‘n which the lambda expression is

evaluated. The reader may verify that the function represented in the lambda

calculus by
(LAMBDA (X) (LAMBDA (Y) (PLUS X Y)))

which the preceding section showed to be inexpressible in S, is expressible in
T (indeed, by the same lambda expression).

2.4.2: Functional Incompleteness of T

£xcept for the special cases involving the application of the primitives T and

F, the T evaluator wniformly evaluates the expressions supplied to an operator

as arguments before the operator is applied. This order oS evaluation, which
has been termed applicative order, has the virtue that each subexpression of

|

2.4.2 -31-

an AE is evaluated at most once, whereas in the normal order evaluation of the
1ambda calculus an argument to a function may be evaluated many times. The

di sadvantape of applicative order evaluation is that arguments may be
evaluated (once) even though their value is irrelevant to the computation;
this is not merely a matter of occasional inefficlency, since the irrelevant
argument may not be defined whereby the entire computation diverges. Consider

the case of the trinary projection function

P31[x;y:Z]=x

whi~h returns its first argument regardless of whether its remaining arguments
have defined values. The applicative-order counterpart of P31 is represented

in T by the expression:

f31=(LAMBDA(X YZ)X)

This expression does not return a value under "-evaluation unless all three

arguments have defined values.

Jur decision to distinguish between P31 and f3] in effect recognizes tone
undafined element, ®*, as a member of the functional domains of our applicative
languages. Intuitively, % pepresents the "value” of those computations which

do not terminate, and whose expressibility in each language L is guaranteed by

the Turing universality of L.

We now show that P31 is not expressible in T:

Thm 2.4: For every AE £, the T value of the expression

(£3%% [2.5]

(where * denotes any expression whose T value is undefined) is undefined.

proof: We consider exhaustively the possible T values of the operator f:
If £ is a number or a primitive operator, then the value of [2.5] is

undefined due to an error in functionality, i.e. the application of a
primitive to arguments for which it is not defined. may assume that f is

either a combination or a lambda expression, in which cases the value of

the combination is the value of the application of the T value of f to

the specified arguments. If the value of £ is a number or a primitive,

TR T g — S W e

e o

-32- 2.4.2

[2.5) is again undefined due to an error in functionality. Hence the
value of f must be a closure. The computation of the application of a
closure involves binding the values of each argument onto the
envi~~nment, hence the evaluation of [2.5] entails evaluation of each
argument. Since not every argument has a defined T value, the value of

[2.5] is undefined.

Since clearly the projection P31 has the property of f in Theorem 2.4, T must

ve functionally incomplete if we are to consider P31 a function.

2.5: The N model

This section introduces an applicative language whose interpretation involves
normal order evaluation. The superiority of N over T derives from this
revised evaluation order of N, which permits an expression to be evaluated
even though subexpressions of it may be undefined. A theorem of Church and
Rosser establishes that if an AE, A, has a value under any evaluation order,

then it has that value under normal order evaluation; thus in terms of

evaluation order, N is optimal.

The simplest implementations of normal order evaluation involve the
substitution of argument text in the bodies of lambda expressions, rather than
the binding of argument values in environments. While the explication (and
implementation) of such substitution algorithms is relatively straightforward,
evaluation by simple substitution is often inefficient since

1) It involves making many copies of program text during execution, and
2) It often involves multiple evaluations of the same subexpression.

For reasons of efficiency, substitution evaluators are thus primarily of

theoretical interest.

More efficient implementations of normal order evaluation retain the
»nviromment structure of the T model, and introduce additional mechanism to
indicate which bound expressions have or have not been evaluated. Since the

~rvironment implementations of normal order evaluation involve considerable

2.5 -23-

bookkeeping machinery and are hence conceptually much more complex than the

subst.itution algorithms, they will not be pursued.

2.5.1: Axioms for the Lambda Calcuius

The primordial applicative language is the lambda calculus, which has been the
sub ject of much investigation since its conception by Alonzo Church in the
1930s, The semantic basis of the lambda calculus is a set of axioms which
define an equivalence relation, =, on expressions of the language. Each axiom
may be interpreted as a conversion rule (or reduction rule) in the sense that
it provides a means for converting (or reducing) an AE to an equivalent (under
=) AE having a different form. The presentation of the axioms in this chapter
is somewhat informal, serving primarily as motivation for the N interpreter;
the interested reader is referred to Curry[12]) and Hindley[21] for further
detail. Related issues are also covered in greater depth in later chapters of

this report.

The axioms of the lembda calculus are of 4 types, designated alpha
(equivalence under renaming), beta (function application), delta (primitive
funct ion definition), and, in some formulations, eta. The delta and eta
axioms are not used in all formulations. The eta axiom seems to serve no
important function in the evaluation of expressions and will be presented here
only in passing. The delta axioms may be avoided by well known coding
techniques which involve the representation of nonfunctional data, e.g.

natural numbers, as lambda expressions.1

The formulation which will be primarily referred to in subsequent chapters
comprises the alpha, beta, and delta axioms, and is often termed the

beta-delta-calculus in the literature. Unless otherwise qualified, generic

references to "the lambda calculus" in this report denote the beta-delta

calculus.

The equivalence relation = of interconvertability is generated by a relation

1 Many such codings are possible; a popular choice represen:s 0 by the
expression (LAMBDA(X)(LAMBDA(Y)YS) and the number n+1 by

(LAMBDA (X) (LAMBDA(Y) ((N X)(X Y)))) where N is the representation of the number
n. For development of such a coding, see Church{ 1].

-34- 2.5.1

-> of reducibility; hence X->Y implies X=Y which, in turn, implies Y=X.
Reducibility is in general antisymmetric, however; thus -> provides an
ordering of equivalent expressions which has important ramifications in the
lambda calculus. The relation -> is defined to be a monotone relation1

meaning that it has the following properties:

Reflexivity: For every X, X->X;
Transitivity: If X->Y and Y->Z, then X->Z;
Monotonicity: If X->Y and B is the result of substituting, in an expression

A, X for an occurrence of Y, then B->A,

Ti,e relation = is in addition an equivalence relation; hence X=Y implies Y:=X.

Central to the axioms is the substitution rule, S, of fundamental importance
to the lambda calculus as well as the theories of the following chapters of
this report. S is formulated as a three areument function, such that the
meaning of S[X;Y;Z) is roughly "the result of substituting the expression X
for free occurrences of the variable Y in the expression Z. The definition of
S is further complicated, however, by the requirement that the operation
S[X;Y;Z) not introduce conflicts between free variables in the expression X
and bindings of X within Z. There is a long history of incorrect algoritms
for S; the definition given here is due to Curry:

Defn 2.6: For expressions X and Z, and variable Y, the expression S[X;Y;Z] is

defined as follows:

1) If Z=Y, then X;

2) If Z is a primitive, number, or identifier other than Y, then Z;
3) If Z is of the form (Z1 22) then (S[X;Y;Z1] S[X;Y;Zzl);

4) If Z is of the form (LAMBNDA(A)M) where YzA, then Z;

5) If Z is of the form (LAMBDA(A)M) where Y is different from A, then

(LAMBDA (B)S[X;Y;S[B;A;M]]). where the variable B is chosen as follows:
i) If Y does not occur free in M or if A is not free in X, then BzA;
1i) Else B is any variable which occurs free neither in M nor in X.

! Terminology after Curry[12]

-35-

We now procede to the statement of the axioms:

Axiom alpha: If E is a lambda expression of the form (LAMBDA(X)M) and the
variable Y does not occur free in M, then E->(LAMBDA(Y)S[Y;X;M]).

We say that expressions A and B are congruent if A can be converted to B by
alpha conversion alone. Note that if X=->Y by alpha conversion then Y->X by
alpha conversion; hence X=Y. Congruence is thus symmetric and transitive,
and under most circumstances congruent expressions may be treated as
identical. We say that expression X is in normal form if the only reduction

which can be performed on X is alpha conversion.1

Axiom beta: If E is an expression of the form ((LAMBDA(X)M) A) then
E->S[A; X;M].

Axiom eta: If E is an expression of the form (LAMBDA(X)(M X)) where X does not
appear free in M and M is a lambda expression, then E->M.

Axiom delta: If E is an expression of the form (F A1 A% ogere An) where F is a

primitive function symbol and each Ai is in normaf form and contains no
free variables, then E->f[A1;...;An] where f is the operation denoted by
F.
The following two theorems are of fundamental importance in the lambda
calculus. The first is due, in its initial primitive form, to Church and

Rosser and is referred to in the literature as the Church-Rosser Theorem:

Thm 2.7: Let X and Y be expressions such that X=Y. Then there exists an
expresion, Z, such that X->Z and Y->Z,

proof may be found in Curry(12) or Hindley[21] and elsewhere.

The Church-Rosser Theorem shows that the lambda calculus is consistent in the
sense that the relation = is nontrivial; in particular, X=Y is not true for
incongruent expressions X and Y in normal form. We can thus prove that

expressions X and Y are not interconvertible by finding normal forms X° and

1

This definition is recast more formally in the terminology of Chapter 4,

~36~ 2.5.1 i

Y, where X->X " and Y->Y’, whicn are incongruent.

Unfortunately, not every expression X is convertable to an expression X’ in

normal form. For example, the important expression
Y=(LAMBDA(F) ((LAMBDA(H)(F (H H)))(LAMBDA(H)(F (H H))))) !

which is the "paradoxical combinator" of Curry, has no normal form. Further
discussion in this area follows in Chapters 4 and 5, along with related

technical developments.

A second important theorem, due to Corrado Boehm, has been proved only ior

systems which prohibit delta conversions: {

Thm 2.8: Let X and Y be incongruent expressions in normal form, and let C and
D be arbitrary expressions. Then there exists and expression Z such that
C=(Z X) and D=(Z Y).

proof originally appeared in Boehm[20], in Italian; a proof in English
appears in Curry(27].

Boehm ‘s Theorem guarantees that incongruent normal forms in the beta-eta

calculus1 are semantically distinct; in particular, the axiomatic assertion

that any two incongruent normal forms are interconvertable results in an

inconsistency. The extension of Boehm’s Theorem to systems which include

delta conversions requires that the constants added to the pure lambda

calculus also he semantically distinct. We might, for example, formulate a .

calculus including the numeric constants without providing any means for
distinguishing between them: we could provide the primitive PLUS but not
GREATER. While this formulation is valid in terms of the lambda calculus,

Boehm’s Theorem is clearly inapplicable since there is no expression Z which
distinguishes, say, between the normal forms 2 and 3.

! i.e., that formulation including axioms alpha, beta, and eta, but excluding
delta conversions.

2.5.2 -37- ‘
2.5.2: Nommal order: Substitution

Each of the lambda calculus axioms provides a means by which an applicative

expression E may be reduced to an equivalent expression E°. While the axioms
themselves place certain restrictions on the order in which such reductions
may be perf’or‘med,1 the evaluator of an applicative expression has a great deal
of freedam to choose the order in which to evaluate subexpressions.

Normal order evaluation specifies that at each evaluation stage, the leftmost
reducible subexpression is to be converted.

2.5.2.1: The N Evaluator
We define the N value of an AE x as follows:

N[x] =

if x is a number, then x;

if x is a member of ({PLUS,GREATER} then x;

if x is a lambda expression, then x;

if x is of the form (PLUS a b) where N[a] and N[b] are
both aefined and numeric, then N[al+N[b];

if x is of the form (GREATER a b) where N[a] and N[b]
are both defined and numeric, then if N[a]>N[b] then
(LAMBDA(X Y)X) else (LAMBDA(X Y)Y);

if x is of the form ((LAMBDA(a)b)c) where a is an
identifier and b and ¢ are AE’s, then N[b’"] where b’
is the result of substituting ¢ for each free
occurrence of a in b; .

if x is of the form (a b) where a and b are AE’s and a
is not a lambda expression, then N[(N[a] b)];

else undefined;

Note that we have eliminated the primitives T +.d F, which are entirely
equivalent in N to the lambda expressions which replace them as values of
GREATER.

! Not every expression E containing applications of lambda expressions, for
example, is beta-reducible. Applications ofaxiom alfhaslie the renaming of
cable,

variables, may be required before axiom beta is appl

-38- 2.5.2.2 \

2.5.2.2: Axiomatic Consistency of N

We show in this section that N evaluation is consistent with the semant ics of]

the lambda calculus by demonstrating that N preserves the equivalence relation

none
{

Thm 2.9: Let E be any AE such that N{E] is defined. Then E->N[E] where -> is

the reducibility relatica defined by the lambda calculus axioms.

by induction on the ievel of recursion in the computation of N[E].

proof':
basis: if E is a number, a primitive, or a lambda expression then N[E]zE.
induction: we assume that the Theorem holds for recursive calls to N.

Then the Theorem holds for the remaining syntactic cases of E by the

monotonicity of =>.

is not necessarily a normal form. Lambda
are not reduced by N, since otherwise the

1 expressions (e.g. the paradoxical combinator

We note in passing that N(E]
expressions, in particular,
evaluation of certain meaningfu

Y) would not terminatce.

2.6: Functional Domain of N

the entire domain of N constitutes a

funct ional domain satisfying the intuitive criteria of [1.1]. We interpret
~, on the domain of N as follows:

In this section it is shown that

the semantic equivalence relation,

For X,Y in Dy, XY if and only if (2.10]

for every Z in DN and number n,
(2 X)=n <=> (Z Y)=n

where DN is the domain of N We now justify this interpretation of -~ on N

thru

Thm 2.11: The domain of N is a functional domain, obeying the criteria of

[1.1], under the above interpretation of ~.

proof: The equivalence relation ~ defined in [2.10] must be shown to obey

2.6

-39-

the three clauses of [1.1] over the domain DN of N. We treat the clauses

individually:

1) For mumeric constants X and Y, we must show that X7Y <=> X=Y.
¢z: direct, by the equivalence of identical expressicns.

=>: Assume X~Y. Then by bveta-reduction,

((LAMBDA(a)a) X)=X

and
((LAMBDA(a)a) Y)=Y

and thus, by [2.10], X=Y since they are numeric. By [2.7] there exists a
Z such that X and Y are each reducible to Z; since X and Y are not
reducible, Y, Y, and Z must be identical.

3) To show: X“Y <=> for all Z in DN'
(Z X)™(Z Y) or neithrer defined.

=>: Assume false. Then for some X~Y there exists a Z1 such that
Q
(2, INZ, V)

where T is the negative of ~. This implies, by [2.10], that there exists

a Z2 such that

(Z2 (Z1 X))=n
for some mumeric constant n but not
(Z2 (Z1 X))=n

(we are assuming here one of two completely symmetric cases with no loss
of generality - the other case follows by interchanging the symbols X and

Y). Defining Z, by the lambda expression

3

ZBE(LAMBDA(a)(Z2 (Z, a)))

we note that

(Z3 X)=n but (Z3 Y)#n

hence by [2.10] XTY.

xS}
(o))

~40-

<=: Assume that for all Z in DN' (Z X)~(Z Y). Then (Z X)=n (for numeric
constant n) if and only if (2 Y)=n by the argument of part (1). Hence by

[2.10] X°Y.

2) It must be shown that XY if and only if for all Z in DN’ (x 2)~(Y 2).
From part (2) of this proof, X7Y <=> for all Z:

((LAMBDA (a) (A Z)) X)~((LAMBDA(a)(a 2)) Y)
hence, by beta-reduction,

(X 2)~(Y 2)

The significance of Theorem 2.11 is that every element of the domain of N
corresponds to some element of the abstract semantic domain: every element of
DN is intuitively functional. Thus N (and the lambda calculus on which it is
basgd) is a language of "pure" functions. We shall find in the next chapter

that this pleasant property costs us something, however, in terms of

expressive power,

2.7: Summary

The material in this chapter is largely introductory. The three interpreters
presented are abstracted from conventional implementations, and their scrutiny

serves to relate common implementation issues to the expressibility of

functions. The major findings were:

1) Each language is arithmetically complete, in the sense that every

canputable function defined on the natural numbers is expressible.

2) The FUNARG problem leads to the inexpressibility in S of functions whose

domain contains integers and whose range contains infinitely many

funct ions.

2) Applicative order evaluation renders inexpressible in T every function

whose domain includes %, the undefined computation. An example of such a

function is the constant function (LAMBDA(X)3) of one argument.

-——

2.7 -41-

4) The interpreter N, based on the normal order evaluation of expressions by
substitution, suffers from neither of these deficiencies. We can

construct a functional domain F such that every expression X in the

domain of the language N corresponds to an element of F; thus N is a
"pure" language in the sense that every expression corresponds to a
funct ion or a number. This is not true, for example, in S, where lambda

expressions containing free variables can compute different functions in

varyl~z contexts.

We are left with N, an interpreter whose behavior is intended to model the
lambda calculus; the remainder of this report, roughly speaking, deals with a

particular weakness common to N and the lambda calculus.

Preceding page blank

3 -43-

Chapter 3:

Motivation for a Multi-valued Semantics

Central to this chapter is the argument that the N nodel, and hence the lambda
calculus, is functionally incomplete because of the inexpressibility in N of a
class of computable functions on N’s domain. The inadequacies of N leading to
this weakness are explored, and two new model languages are presented, each
curing the problem in a different manner. The first model, which has
provision for encoding representations of functions as integers, is found to
be unsatisfactory for both practical and semantic reasons. The alternative
solution proposed in this chapter involves mechanism for the representation of
semantic elements with multiple values; this mechanism, called EITHER, is the
principal focus of the remainder of the Thesis.,

3.1: Necessity of non-functions: WHICHFF

Consider the family of partial functions, {FFi} for i ranging over N, which

satisfy the following conditions: for each natural number i,

FFi[x] = i, i=x [3.1]
divergent, i#x

Thus each FFi has a single element in its domain: the number i. For any other
argument the value of FFi[x] is undefined. The {FFi} are clearly partial
funct ions in the intuitive sense of Defn [1.1], and are computable in each of
the model languages considered here. Furthermore, they are semantically
distinct: for no numbers 1£J does FFi"FFJ. There is then nothing intuitively

objectionable about a function which maps each FFi to its corresponding 1i.
Consider such a function WHICHFF which, for each natural number i, has the

property that:
WHICHFF(FF,] = 1 [3.2]

Intuitively WHICHFF is a function from {FFi} onto N; furthermore it is
demonstrably computable using ndovetailing” or multiprocessing techniques.
Note in particular that the following definition of WHICHFF satisfies the
condition of [3.2]:

-4 3.1

WHICHFF[f] = i such that f[i]=i, (3.3)
if such a number i exists;

else undefined

We may view the dovetailed evaluation of WHICHFF[f] as the computation of r{o]
for one second, the computations of £f(0] and f[1] each for two seconds, and
similarly wntil any one of the computations f[i] terminates normally; the

value of this f[i] would then be taken as the value of WHICHFF(f]. However,
WHICHFF is not expressible in N; this is a result of

Thm 3.4: Let L be an arithmetically complete applicative language and let DL
be the domain of L, Then no function WHICHFF having the properties of
{3.3] is functional over DL.

proof by reduction to the haltirg problem. Assume that DL contains a
funct ion WHICHFF having the property given in [3.3]. Then for any
function £ in DL and any number i, L{(WHICHFF f)]°i if L"FFi. Now
consider the union of the functions FF1 and FFZ’ given by:

FF12[x] = 1, Llx]=1; (3.5]
2, Llx]=2;
divergent otherwlse

FF12 is clearly a computable first order function, hence it is
expressible in L by the arithmetic completeness of L. Now L[(WHICHFF
FF12)] can have as its value at most one of {1,2)}; thus either L[(WHICHFF
FF12)]£1 or L[(WHICHFF FF12)]£2. Assume, with no loss of generality, the

former. Then define the second order function g as follows:

glf] = the function g., where
gf[i] = 1, 1=1;
2, i=2 and f[0] defined;
divergent otherwise. For every computable
first order function f, g (or equivalently g(f]) is evidently
computable. Moreover, if (0] is undefined then gr is identical to the

function FF1; otherwi se ¢ is _dentical to the function FF12. We use the

ability of WHICHFF to distinguish between FF1 and FF12 to determine
whether f[0] is defined, bty means of the function h given by

3.1 -U45. ‘
h(f] = WHICHFF[g[f]]
We note finally that for any function f ¢

f{C] convergent => g[f] - FF12 => h(f]£1;
and

£(0] divergent => gLf1°FF, => h[f]=1 '

Hence h(f]=1 if and only if f[0] is divergent. The divergence of f(0] is

decidable, as one of the computations h(f]) and f[0] must converge; thus
the function h provides a solution to the "halting problem" for first

f order functions, and is a well known noncomputable function. Since h is

clearly camputable in terms of WHICHFF, we conclude that WHICHFF is not a

camputable function over any domain including the first order functions.

Since it was shown in the last chapter that every function expressible in N is
functional over all of the domain of N, it follows that WHICHFF is not

9 expressible in N, This inexpressibility relates intuitively to two aspects of
] the implementation of the N interpreter:

1) The interpreter does not admit multiprocessing. If, in the evaluation of
expression A, N embarks on the evaluation of a subexpression a of A whose
N value is not defined, then the N value of A is not defined.

2) The only mechanism in N by which a function f can recover information
about its functional argument E is the application of g. There is no
means by which f can discover the algorithm (or program) by which J-4

e .

camputes values, even though the internal representation of g necessarily
} : includes this information. Hence if f is to make any use of E, then g
must be applied to some argument; By the constraint (1) above, the

nontermination of this application results in the nontermination of the
application of f.

The correction of either of these deficiencies is straightforward in an
implementational sense -- many extant languages boast provisions for

mult iprocessing and/or access to representations of functions. However,
neither

"correction” is easily reconciled with the semantics of an applicative

language. The second limitation of N seems a natural consequence of our

-46- 3.1

distinction between the notions of a function f and any of the algorithms for
computing £ from its arguments; a language which provides mechanism for

di stirguishing between algorithms for computing a particular function f would
certainly have non-functional elements in its domain. The semant ic

rami fications of a cure to the first problem, however, are more subtle and

will be explored in detail.

The following sections presert two alternative extensions to N, each

corresponding to a "fix" of one of the above limitations. The function

WHICHFF is expressible in each.

3.2: Coding primitives: The C model

We noted that a limitation of N, justifiable by our intuitive respect for the
semantics of functions, is that no information can be recovered about an N
funct ion without the application of that function. In particular, N provides
no means for recovery of information about the representation of a funct ion as
an N expression. We have thus avoided the "Turing machine tar pit" -- the
argument that any language as powerful as a Universal Turing Machine has

exactly the same set of expressible functions.

The C model presented here has, in addition to the primitives and structure of
N, primitives for the translation of the representation of language elements
to and from a tractable form. Making the fundamental assumption that any
function defined on a domain F is computable if and only if it is computable
from the representations of elements of F, we must conclude that a Universal
Turing Machine (or its equivalent) operating on the representations of
arguments to the computable function f can compute representations of the

values of £. This is the substance of our claim of functional completeness of

the language C.

The interpreter for C is jdentical to the interpreter for N except for the
addition of the primitive operators CODE and DECODE. CODE maps

representations of the domain of C into the natural numbers:

CODE: DC -> N

3.2 -47-

and may be viewed as a Goedelization of the character string representing its
argument. The claim we make for CODE is that if (CODE X) and (CODE Y) have
the same (numeric) value then X and Y are semantically equivalent; they are
in fact represented in an identical manner. We cannot, of course, claim that
in general X°Y implies (CODE X)=(CODE Y), as there are many representations of
each semantic element and the semantic equivalence of the representations is
effectively undecidable. The operator DECODE is the inverse of CODE: given
the Goedel number of the representation of an element, it returns the element.

We thus claim that each expression X is semantically equivalent to (DECODE
(CODE X)).

Our claim for the functional completeness of C is formalized, to the extent
possible, in

Thm 3.6: Let F be a functional domain of C, and let
g: F =>F

be a computable function on F. Then g is expressible in C, i.e., there
is an expression G in the domain of C such that for all x,y in F, glx]=y
implies that (G X)-Y.

proof: Since g is computable then so is h defined by:

h = (LAMBDA(Y) (CODE (g (DECODE Y))))

as it is simply the composition of computable functions. Furthermore,
since h is a function from N to N, it is expressible in C by the
arithmetic completeness of C; let H be the representation in C of h,
Then the function g is expressible in C by :

G = (LAMBDA(X)(DECODE (H (CODE X))))

It must be recognised that CODE is not functional: it radically disobeys the
intuitive requirements of Defn 1.1. We note, for example, that CODE might
return different values for the arguments (LAMBDA(X)X) and (LAMBDA(Y)Y) as
they have different representations, violating our requirement that

semantically equivalent arguments producz semantically equivalent results.

-48- 3.2

WHICHFF example of the preceding gection., The representation of WHICHFF in C

involves writing an interpretor, operatine on the CODEd representations of C
expressions, which simulates the required "dovetailing" by computing 1 step of
(g 1), 2 steps of (g 2), 2 steps of (g 1), etc. Presentation of actual code
for WHICHFF on C would be, at best, a messy task;.it is hoped therefore that
the reader will accept the expressibility of WHICHFF in C on the basis of

Theorem 3.6 and this informal di scussion.

3.2.1: The Turing-machine Tar Pit

The introduction of the specter of coding requires further reflection. We
have made the enticing observation that, with the introduction of a simple
mechanism allowing the representations of functions to be accessible as data,
every camputable funct ion becomes expressible. We have noted corollary

di sadvantages -- (i) the semantic confusion resulting from the nonfunctional

character of OODE, and (i1) the practical absurdity of having to include the
code for interpreters in the definitions of certain functions.

However, the inclusion of coding primitives in an applicative language may be
objected to on more fundamental grounds than the above. The stated semantic
goal of an applicative language is the representation of functions. Thus such
a language provides a set of rules and conventions for associating expressions
with abstract functions; moreover, the power and consistency of the language
stem largely from the applicability of these rules and conventions to every
expression in the language. In the lambda calculus, for example, we are
assured that expressions which are interconvertible via the alpha and beta
axioms are equivalent. The cost of this assurance is a corresponding
constraint on the computations which we might perform: the alpha axiom
positively prohibits us from writing a function which distinguishes

(LAMBDA (X)X) from (LAMBDA(Y)Y). We accept this constraint because the
structure which it imposes is useful to us; we recognize that we cannot be

assured of a relation and simultaneously be allowed to violate it at will.

Coding primitives may be viewed as a mechanism for violating the structure

imposed by an applicative language. None of the lambda calculus axioms, for

example, are valid in the presence of coding, since nfunctions" can be written

i . |

§ .2l -49-

which distinguish between interconvertable expressions. The rules and
‘onventions for representing functions are, in effect, abandoned. The
rreprammer is thus freed from the structural constraints of the language, but
finds himself in a semantic anarchy -- while he may write any function he
j'leases, he may make no assumptions about the structure or representation of

its arguments.

3.2.2: Functionality of DECODE

We may convincingly defend the contention that CODE is not a function by
demonstrating that it returns semantically distinct integers, say, for the
ejuivalent arguments (LAMBDA(X)X) and (LAMBDA(Y)Y). This demonstration does
not apply, however, to the inverse of CODE; there is nothing inherently
nonfunctional in the fact that DECODE returns semantically equivalent
evpressions (LAMBDA(X)X) and (LAMBDA(Y)Y) when uiven semantically distinct
integers as arguments. It is the purpose of this section to demonstrate that
functions with the property of DECODE (i.e. mapping a subset of the natural

numbers onto the entire domain of discourse) ~re expressible in N and the

lambda calculus.

3.2.2.1: LAMBDA-free AEs

It is convenient for certain purposes to use the techniques developed
primarily by Curry(12] of the calculus of combinators for the reduction of
applicative expressions to equivalent expressions whose use of lambda
expressions is highly restricted. For our purposes we shall consider the

combinators listed below (along with their respective definitions):

I = (LAMBDA(X)X)

K = (LAMBDA(X) (LAMBDA(Y)X))

W = (LAMBDA(X)(LAMBDA(Y)(X Y)))

S = (LAMBDA(X)(LAMBDA(Y)(LAMBDA(Z)((X Z)(Y Z))))
G, = (LAMBDA(G) (G G))

G, = (LAMBDA(G) (LAMBDA(Y) (Y G)))

G (LAMBDA (Y) (LAMBDA (X) ((Y X) X)))

3 £

-50- 3.2.2.1

Gu = (LAMBDA (G) (LAMBDA (D) (LAMBDA(X) (G (D X)))))

We show in this section that every applicative expression using no lambda

expressions other than the above combinators; we begin with

Lemma 3.7: Let R be a LAMBDA free AE in the single argument applicative
language L, and let R contain occurrences of the variable x. Then R is
equivalent (by alpha and beta axioms) to a LAMBDA free AE of the form (R’

x) where R’ contains no occurrences of the variable x.

proof is by structural induction on R.

basis: R is atomic (in particular, R is not a combination). If r is the
variable x, then r’ is (I x)=x (by axiom beta). If r is not the variable
X, then r contains no free occurrences of x and r’ is ((K r) x) =
((LAMBDA(X)p) x) = r.

induction: R is a combination of the form (R1 RZ)' By inductive

hypothesis, R:((R1' x)(RZ' x)) for some AFs R1' and RZ' not involving the
variable x; then R =(((S R1) RZ) x) = ((LAMBDA (Y) (LAMBDA (X) ((R1 X) (Y

XN = (R, x)(R, x)).

The principal result of this section is the following adaptation from Curry’s
Synthetic Theory of Combinators:

Thm 3.8: Let A be an AE in a single-argument applicative language L whose
semantic equivalence obeys axioms alpha and beta. Then A is <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>